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Analysis of Air Pollution Effects:
Uncertainties in Proceeding to Standards
by Stanley V. Dawson*

Uncertainties in the collection and assessment of scientific information make ambient
air quality standard setting difficult. Uncertainties occur in the estimation of the medical
parameters under test due to the inherent random variability encountered in sampling
the parameters. The most common method of dealing with random variability is statisti-
cal significance testing. The main caution offered in regard to that analysis is to avoid
calling a nonsignificant result negative, unless the circumstances are such that the
smallest effect which indicates likely harm to health could have been detected with
sufficiently high probability.
Uncertainties also play a crucial role in evaluating the implications that even statisti-

cally significant test results have for human health. A signal-detection model, developed
to explain expert performance in evaluating the results of such diagnostic tests as X-rays,
is presented as an analogy for the situation facing experts who are evaluating the
implications of health data that is being considered for use in setting a standard. If
criteria are too strict for accepting data as evidence of harm to health, then it is argued
that, as a consequence, the decision process will not have sufficient ability to discriminate
against false-negative results. False-negative results are those that incorrectly conclude
there is no threat when, in fact, a particular level of pollutant is actually a threat to health.

The customary approach to setting such safety
levels as ambient air quality standards has been
based upon deciding a threshold of effects. The
threshold is the lowest pollutant concentration at
which harmful effects have been observed. Ear-
lier in this century, the only "effect" that was
convenient to detect was death of sensitive la-
boratory animals after pollutant exposure. In or-
der to provide sufficient protection for humans,
standards that were set on the basis of this data
generally used a large margin of safety. The mar-
gin of safety is the difference between the level of
the threshold and ofthe standard. In recent years,
advances in science have allowed ambient air
quality standards to be based upon thresholds of
such nonlethal effects as increased airway resist-
ance and increased pneumonia incidence. Stan-
dards based upon nonlethal effects generally have
a small margin of safety.

Recently, Lowrance has discussed a risk analy-
sis approach to standard setting (1). In this ap-
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proach, standard setters first determine the risk
of harmful effect at different pollutant exposure
levels. A graph of this relationship is made. This
graph is then used along with information on
societal attitudes to decide on the acceptable level
of risk and the accompanying limiting exposure
level. Regulators can apply a surrogate for a
margin of safety in this approach by using a worst
case assumption for the graph.
The key issue in either of these approaches to

standard setting is the assessment of the human
health implications of the available studies. Spe-
cific questions might be as follows: Under what
circumstances does a 1% increase in mortality in
mice colonies exposed to a pollutant level a high
enough increase to indicate that humans should
not be exposed to that level? What are the impli-
cations to human health of a 10% increase in
breathing rate of a group of guinea pigs exposed
to another level of another pollutant? The an-
swers to such questions are at the heart of the
standard-setting process, and yet they are full of
uncertainty. Two kinds of uncertainty involved in
answering such crucial questions are discussed in
the remainder of this article.



The first kind of uncertainty is observational.
This is the uncertainty of whether or not a pollu-
tant effect was truly present or absent in the
situation being observed. The second kind of un-
certainty is about what the studies imply about
human health. This is the uncertainty of deciding
what effect on human health should be inferred
from the results of a study on pollutant effects.

In this paper both kinds of uncertainty are
characterized on the common basis of the proba-
bility that the uncertainty will permit an incor-
rect outcome. The discussion of the uncertainty of
whether an effect was present or absent is essen-
tially an application of standard methods of sta-
tistical significance testing. The interpretation of
nonsignificant tests receives particular emphasis.
That discussion then serves as a background for
the treatment of uncertainties about health im-
plications.

Uncertainties of Whether There
Was an Effect
Three types of studies are used in modern stan-

dard setting to relate biological effects to air pol-
lution exposure: controlled laboratory studies of
animals and tissues, controlled laboratory studies
of humans, and epidemiological studies of human
populations (2). In all three kinds of studies, sta-
tistical tests are used to assess the probability
that any observed biological effects are associated
with pollutant exposure, rather than being sim-
ply a chance result attributable to the inherent
random variability of the phenomena being stud-
ied. One important source of variability is simply
the variation among the individuals being tested,
whether humans or animals. Even in the same
strain of carefully bred laboratory animals, some
individuals may be much more responsive to pol-
lutant exposure than others. Another source of
variability is the imprecision of the measurement
itself. The combined variability is generally
characterized by the standard deviation C of mea-
surements, as defined in textbooks on statistics
(3-5).

Statistical Tests
The statement of statistical test results is usu-

ally one ofwhether the pollutant effect was or was
not statistically significant-in other words,
whether the probability of an effect being truly
present was sufficiently high. To take a simple
and important example of a test, one type of
experiment measures the difference between

breathing rates of two groups of individuals, one
of which is exposed to a specific level of pollutant
and the other is not exposed. A test result is said
to have been statistically significant if the mean
difference d between the groups is large enough
relative to its variability that the difference is
sufficiently unlikely to have been a chance event.
The standard error of the mean urm measures the
magnitude of random variability of the mean
difference in the same way as the standard devia-
tion measures the variability of the underlying
random process. The standard error of the mean
is given by the formula,

arm = a/n112
where n is the sample size.
The next step is to determine how large the

mean difference must be to be accepted as a sig-
nificant difference. This step requires assump-
tions about the general nature of random varia-
tion of the effects being observed. It is assumed
here, as is customary, that the sampled mean
values have a normal distribution, perhaps after
being transformed.

Hypothesis Testing
The classical statistical analysis tests a "null"

hypothesis: that a measured variable remains the
same in the presence or absence of a pollutant. If
the null hypothesis is true, then the mean differ-
ence would be zero. After an appropriate sam-
pling scheme is established and data are ac-
quired, the statistical analysis of this example
depends upon computing the ratio dlu m, which, in
this context, is called a t-statistic because of its
assumed distribution. If the t-statistic is larger
than a critical value, then the null hypothesis is
rejected, and the result is characterized as being
statistically significant. The critical value is set
so as to limit the probability of declaring that a
pollution effect occurred when, in fact, there was
none. Statisticians call this kind of erroneous
outcome a Type I error. The somewhat arbitrary
choice of an acceptable probability of Type I error
depends upon how serious the consequences ofthe
error are considered to be.
The probability ofcommitting a Type I error for

any possible choice of the critical value can be
read from curve A of Figure 1 in the manner
indicated. This curve graphically displays the
probability that diam exceeds the value of the
horizontal coordinate if there is, in fact, no pollu-
tion effect. Curve A assumes large sample sizes;
an appropriate t-distribution must be used for
each smaller sample size.
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FIGURE 1. Probability that dlam is less than the value indi-
cated on the horizontal axis for three different means (O for
curve A, 1.645 for B, 3.29 for C) of normally distributed
dIom. Tb obtain the probability of Type I error at X,
subtract the height of curve A at the critical value from 1.
Given a probability of Type I error and associated critical
value, the height of each curve at the critical value is the
probability of Type II error for a true effect level at the
mean of that curve.

From curve A it can be readily seen that the
value of dl/m will be less than 1.645 for 95% of all
samples. Thus, for a critical t-statistic (dlam)
value of 1.645, the probability of the Type I error
is 5%. This is generally the largest Type I error
probability used in hypothesis testing. It might be
thought appealing to require a greater critical
value of t-statistic for significance, in order to
obtain a smaller probability of Type I error. How-
ever, this approach leads to a serious difficulty: a
greater proportion of Type II errors. A Type II
error occurs if a nonsignificant statistic occurs
when, in fact, there was an effect due to pollution.

Interpretation of Nonsignificant
Results
A statistically significant result is usually re-

ported as offering substantial evidence of the
existence of the pollutant effect being investi-
gated. The interpretation of test statistics that
are not statistically significant is more difficult.
Often, they are reported as offering substantial
evidence for the absence ofthe effect, when in fact
the result should be considered indeterminate, as
the following discussion will show.

Statistical tests are often characterized only by
the probability of Type I error, i.e., of concluding
that a difference was significant when no effect
was present. However, the opposite type of error,
Type II, also needs to be considered in order to
gain understanding of nonsignificant test results.
Expressing the probability of Type II error is
more complicated than expressing the probability
of Type I error, because the probability of Type II
error depends upon the magnitude of nonzero
mean effect, whereas for Type I error the mean

effect is fixed at zero. Discussions of hypothesis
test performance when there is truly an effect
often refer to the probabilities of not making a
Type II error at various effect levels (the statisti-
cal power of the test for these levels).
The probabilities of Type II error for three

different levels of mean effect are illustrated in
Figure 1. Curves B and C are similar to curve A
in representing probabilities of normal variables
having values less than that indicated on the
horizontal axis, but they have their mean values
shifted away from zero. The assumed mean re-
sponse of curve B to pollutant is 1.645 and the
assumed mean response of curve C is 3.29. The
probabilities ofType II error for a critical value of
1.645 are read from the intersection of that verti-
cal with each ofthe three curves. For curve B, the
probability ofType II error is 50%, because half of
all observations will fall below the critical value.
For curve C, the probability of Type II error is
only 5%, just matching the probability of Type I
error ofthe assumed critical value. Note that for a
very small value of actual mean, as approximated
by curve A (the no-effects assumption), the proba-
bility of Type II error approaches 95%, a very
large chance of failing to detect an effect.
Several well-known introductory texts in

statistics offer a fuller explanation ofboth types of
errors and call attention to the importance of
controlling Type II errors in the crucial task of
designing meaningful experiments (4, 5). Such
considerations are needed to avoid indeterminate
results. A particularly useful set of statistical
power calculations for the tests that are most
often encountered is given in a text by Guenther
(6). The importance of statistical power in design
of agricultural tests has long been known (7), but
such considerations have not been common in
medical tests (8). Land has made some important
points concerning the analysis of observational
studies (9). An enlightening approach to actual
analysis of statistical results relative to their
uncertainty is given in a text by Hays (10).
The dependence of the probability 1 of Type II

error upon the choice ofthe probability a ofType I
error has been displayed graphically by Swets
(11). Such a graph, shown in Figure 2, can be
constructed from curves of the type plotted in
Figure 1 by reading off the 13 for each a as speci-
fied in the caption to Figure 1.
The curves that are obtained demonstrate the

trade-off between Type I and Type II errors. A
decrease in the probability of one type of error
always results in an increase in the other for the
given fixed value of ratio d' = dl/m. It is also
apparent that the closer the curve lies towards
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FIGURE 2. In the context of hypothesis testing, ot is the
probability of Type I error and 13 the probability of Type II
error. In the context of diagnostic medical tests, a is the
probability of false-positives and B the probability of false-
negatives.

the origin, indicating small probabilities of both
types of error, the larger the value of the ratio d'
must be. Because of the connection between the
two types of error, the proper specification of
acceptable probabilities of both should depend on
public health risks and other societal values of
both in an interconnected way. If for example, a
high cost is attached to the Type II error (the
failure to detect a true effect) and if there is no
other feasible way to reduce its probability suffi-
ciently, then it may be prudent to increase the
acceptable probability ofType I error to, say, 10%.
A decision on the maximum acceptable magni-

tude of the two probabilities, a and ,B, fixes the
minimum detectable value of the ratio d'. From
Figure 2, the values of a and d' corresponding to a
constant a can be determined and plotted to ob-
tain a as a function of d' for each customary value
of a (see Fig. 3). Suppose that we have decided
upon a maximum acceptable probability 13max of
Type II error. If we draw a horizontal line on
Figure 3 at a height equal to the maximum ac-
ceptable probability 3ma,,, it will intersect each
constant curve at the minimum difference detect-
able with the specified error probabilities a and
Bmax, Ifwe approximate the true standard error of
the mean by its estimate from the data, we may
compute d'am to obtain an approximation to the
minimum effect level dmin which the level a hy-
pothesis test can detect with acceptable f.
The ultimate interpretation of a nonsignificant
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FIGURE 3. Curves of probability 13 of Type II error for indi-
cated values of probability a of Type I error, which is the
value of dlAm that can be detected with the indicated error
probabilities, a and B.

result depends upon the relationship of the mini-
mum detectable level dmin to the minimum level
of public health concern. If dmin is the smaller of
the two, then a nonsignificant result should be
regarded as essentially negative: within an ac-
ceptable probability of error, effects of public
health concern are not present. Otherwise the
nonsignificant result must be regarded as inde-
terminate, relative to the minimum level of pub-
lic health concern.
The decision on the minimum magnitude of an

effect that is of public health concern is, along
with decisions on the maximum acceptable proba-
bilities, a and 1, a public policy judgment. Thus,
these limiting values will depend on the context
of a particular policy situation. Ordinarily, a sci-
entific investigator assumes a certain nominal
value of a in declaring a result nonsignificant.
When this occurs, a presentation of estimates of
the minimum effects detectable at illustrative
values of 13, as in Figure 3, is very helpful in
interpreting the degree of indeterminateness of a
nonsignificant result. If an investigator does ven-
ture to characterize a nonsignificant result as
strongly supporting the null hypothesis, then a
full rationale for the choice of maximum accept-
able probabilities, a and 1, and the minimum
mean difference of public health concern should
be clearly stated. In any case it is important for
the standard-setting process to be able to review
the statistical analysis of studies considered rele-
vant. So a clear statement of variability of the
estimate of effect, such as provided by am, is
essential for the subsequent analysis to infer a
minimum detectible effect dmin.

Uncertainty of Implications
Posing the Question
A major problem remaining in the interpreta-

tion of the result of a study of pollution effects is
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the magnitude of an effect that is to be taken to
imply a risk to human health. This decision is at
the heart of the standard-setting process and re-
quires a comprehensive analysis of scientific
results and social policy. The decision will often
have to be taken in the face of great diversity of
opinion.
For example, consider a study that shows a

statistically significant 10% shift in mean resist-
ance to pulmonary flow immediately after a pol-
lutant exposure. One expert may state: "This
result indicates possible serious harm because
the pollutant has clearly interfered with the
lung's homeostasis." Another expert might offer a
differing interpretation of the same study: "This
small shift, though statistically significant, is not
likely to be of physiological significance because a
greater change could be achieved simply by
breathing at a lower lung volume." This type of
statement is often seen in the "discussion" section
of an article appearing in a scientific journal that
encourages relevance. Such statements are also
heard in regulatory proceedings. The statements
made might well be more equivocal, but the ques-
tion does arise as to how the experts could come to
such divergent conclusions.

Analogy of a Diagnostic Medical Test
Some insight into how differing expert opinions

come to be offered in connection with developing a
health-based standard can be obtained in an anal-
ogy to interpretation studies of medical diagnos-
tic tests (12-1 7). One of these studies (12) mea-
sured the ability of both experienced and
inexperienced radiologists to diagnose breast can-
cer from X-ray films. The accuracy of the X-ray
diagnosis was checked against the pathological
findings, which were assumed to be correct. When
the X-ray and the pathological diagnoses agreed
on whether or not breast cancer was present, a
true-positive or a true-negative response oc-
curred. Conversely, when the X-ray and the path-
ological diagnoses disagreed, a false-positive or a
false-negative response occurred (see Table 1 for a
summary of outcomes). The probability of false-
positive diagnoses and probability of false-nega-
tive diagnoses for each radiologist was then calcu-

Table 1. Classifications of outcomes of tumor diagnosis
by X-ray.
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FIGURE 4. Characteristic curves of uncertainty. Frequency of
false-positive outcomes versus frequency of false negative
outcomes. Diagnosis of breast cancer from mammogram
(-) by radiologists and (--) by trainees. Adapted from
Lusted (12).

lated and plotted (Fig. 4), according to the
following equations:

PFP = False positives / Cases of tumor absent
= FP/(FP + TN)

PFN = False negatives / Cases oftumor present
= FN/(FN + TP)

Each point on the plot in Figure 4 represents an
individual radiologist. As expected, experienced
radiologists (curve A) generally predicted fewer
false positives and fewer false negatives than
inexperienced radiologists (curve B). For either
level of expertise, however, there was a trade-off
between the number of false negatives and num-
ber of false positives that occur. Within each level
of expertise the individuals that tended to avoid
making a false-negative diagnosis made more
false-positive diagnoses, and vice versa. An indi-
vidual therefore reduces one type of false diagno-
sis at the expense of increasing the other.
A simple signal-detection model of this situa-

tion permits the calculation of a mathematical
relationship between the probability of false-posi-
tive responses and the probability of false-nega-
tive responses. If a normal distribution is as-
sumed for a measure of the clarity of the "signal"
of X-rays that indicate disease, then the theoreti-
cal result is a diagram that is quantitatively
identical to that shown in Figure 2 for signifi-

Iumor absent FP = false positive TN = true negative
Iumor present TP = true positive FN = false negative
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cance testing (11). In this diagram a is analogous
to PFP while f is analogous to PFN. The signal-to-
noise ratio of the detection process is the d' of the
figure. As in significance testing, curves repre-
senting increasing certainty of detection are
closer to the origin. From comparing the shape of
the curves in Figures 2 and 4, it appears that the
predictions of the model are only qualitatively in
agreement with the radiological test results.

Application of the Analogy to Air
Quality Standards
The same sort of problems encountered in the

interpretation of medical tests are also seen when
expert opinion is offered concerning health impli-
cations of the results of data on air pollution
effects. In interpreting health effects of air pollu-
tion, an expert may emphasize avoiding false-
positivejudgment by rejecting statistically signifi-
cant studies that may suggest harm to health but
are far from establishing a serious effect on hu-
man health. Such an expert is, whether con-
sciously or not, increasing the probability that he
or she will make more false-negative judgments
(not detecting effects when they are there). For
example, such an expert might not accept the
relevance of animal tests in quantifying stan-
dards. The expert who pursues the opposite
course, emphasizing avoidance of false-negative
judgments about effects while risking more false-
positive judgments, will generally be more protec-
tive of the public health with respect to that
pollutant. With reference to Figures 2 and 4, the
protectiveness with regard to public health in-
creases as an individual or group performance
point moves towards the upper left-hand corner
and decreases as the point moves toward the
lower right-hand corner.

Alternative approaches to the use of diagrams
such as Figure 2 have been developed for medical
decision criteria (18, 19). In a more comprehen-
sive approach to a related problem of environ-
mental risk, Page has presented a useful discus-
sion of the probabilities outlined in the present
approach (20,21). More traditional approaches to
risk assessment are also mentioned in Page's
work and in the monograph by Lowrance (1). A
diverse set of newer approaches to risk in connec-
tion with standard setting was gathered together
by the U.S. Environmental Protection Agency
Risk Analysis Program and made available in
report form in 1980 (22). One approach, for exam-
ple offered by Feagans and Biller, is based on still
other probability considerations than those of the
present work. Each expert interviewed is asked to

produce his or her own curve of the probability
(vertical axis) that a key effect really occurs at or
below the level of pollutant indicated on the hori-
zontal axis of this graph. [See also a related
workshop proceeding (23).]

Industrial interests have emphasized that air
quality standards should be based on "solid scien-
tific evidence." Such a suggestion might seem to
imply that the scientific basis of present stan-
dards is not now solid enough, despite the fact
that an expert scientific review of the basis of
federal standards generally performed, as is re-
quired by law. Using the present thesis, this
suggestion might be interpreted to be a call for
experts to increase avoidance of false positives or
for decision makers to rely more on experts who
do so judge. This approach would tend to relax
standards because decision makers would focus
on the need for strict criteria of acceptability
rather than on requiring a convincing demonstra-
tion of the safety of an exposure.
An example of a specific form that such an

approach can take among scientists is the sugges-
tion by Ferris and Speizer to narrow the defini-
tion of adverse health effects to "medically signifi-
cant physiologic or pathologic changes generally
evidenced by permanent damage or incapacitat-
ing illness to the individual" (24). Such a recom-
mendation would certainly have the consequence
of reducing the probability of false-positive judg-
ments. Thus, decisions using this criterion would
have less tendency to be based on an effect of air
pollution when none should have been attributed.
According to the present analysis, however, such
a reduction of the probability of false-positive
judgments would inevitably have the conse-
quence of increasing the probability of false-nega-
tive judgments. This consequence is of special
concern, because such an approach would lead to
a direct increase of the risk to human health.

Conclusion
This analysis makes the case that overly strict

criteria for judging an effect thought to be of
health concern tend to increase risk of harm to
public health. The examples given in the text
were controlled laboratory experiments, but the
same principle of the risk of overly strict criteria
for acceptance also applies to epidemiological
studies. A crucial example is an observational
study which did not control for a potentially con-
founding variable. If such a study is otherwise of
sufficient overall quality, the study may still need
to be given weight if an air quality standard is to
prevent risk to public health.
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In this discussion many simplifications have
been made. For example, the emphasis has been
on a single effect of a pollutant. In actual stan-
dard setting, the full set of effects must be consid-
ered together. This is partly in order to test one
observation against another and partly to assess
the range of effects.
Even with the adoption of a policy of avoiding

overly strict criteria for studies accepted as hav-
ing an effect on health, a substantial margin of
safety may still be needed to obtain a standard
that assures sufficient protection of public health.
In addition, the choice ofmargin of safety needs to
take into account a number of other practical
factors, such as the spatial and temporal varia-
tion of pollutants and the effects of combinations
of pollutants.

The author is grateful for suggestions by A. Alexis, J. K.
Moore, H. Griffin, H. Ozkaynak and S. C. Morris and by the
anonymous reviewers.
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